Quadratic systems with a degenerate critical point
نویسندگان
چکیده
منابع مشابه
A note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملDirac point degenerate with massive bands at a topological quantum critical point.
The quasilinear bands in the topologically trivial skutterudite insulator CoSb(3) are studied under adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and inversion symmetric system, a transition from trivial insulator to topological point Fermi surface system occurs through a critical point in which massless (Dirac) bands appear, and moreover are deg...
متن کاملNon-degenerate Quadratic Laminations
We give a combinatorial criterion for a critical diameter to be compatible with a nondegenerate quadratic lamination.
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملa note on critical point and blow-up rates for singular and degenerate parabolic equations
in this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,t)$, subject to nulldirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. the optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1988
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700027167